
Arabic Diacritization with Viterbi N-gram Model,
Transformers, and Recurrent Neural Networks

Reyhan Abdul Quayum
New York University
rrq2003@nyu.edu

Benchik Bayor
New York University
bb2998@nyu.edu

Cheng Ji
New York University
cj2220@nyu.edu

Usaid Malik
New York University
usaid.malik@nyu.edu

Abstract

This project develops multiple systems to
automate the vocalization of unvocalized
Arabic texts, addressing a significant chal-
lenge for non-native speakers and enhanc-
ing readability and understanding. We
leverage a combination of Natural Lan-
guage Processing (NLP) techniques in-
cluding an N-gram model employing the
Viterbi algorithm, a Recurrent Neural Net-
work (RNN), and a Transformer-based ar-
chitecture, each selected for their strengths
in contextual analysis and sequence model-
ing.

The core dataset comprises pre-vocalized
texts from a variety of Arabic media
sources such as the Qur’an, Hadith, chil-
dren’s literature, and beginner Arabic
books, ensuring a rich variety of linguistic
contexts. Our system is evaluated against
a development set aiming for a Diacritic
Error Rate below 10%. We define Diacritic
Error rate to be the proportion of predicted
diacritics that were incorrect from the ac-
tual diacritic that was on the letter.

The implementation details for the trans-
former based model includes a fine-tuning
of the Asafaya BERT-based Arabic lan-
guage model and a modified Hugging Face
Model for diacritic prediction, with pre-
processing steps that prepare and tokenize
the input data effectively. Additionally,
we used an RNN with both Bidirectional
LSTM layers and Unidirectional LSTM lay-
ers.

We observed the lowest Diacritic Error
Rate (DER) from our Recurrent Neural
Network (RNN) model, scoring a DER of
3.25%. Succeding this error rate, we unex-
pectedly observed a greater error rate from
our transformer model at 7.0%. Lastly, our
Viterbi n-gram model attained the largest
DER.

1 Introduction and Motivation

Arabic diacritization, the process of restoring
diacritical marks to undiacritized text, is a sig-
nificant challenge in NLP. For example, the
word ༟ which may mean the following differ-
ent words with different diacritics as seen in
Table 1.

Arabic Word IPA Meaning
༟ Q l m Meaning Ambiguous
َ ༟َِ Qalima He knew

ᕡََْ༟ Qalam Flag
༟ِْ Qalm Knowledge

َ ༟ُِ Qulima (It) was known
(1)

Despite its importance, there has been a lim-
ited focus on this task, with existing studies
often relying on traditional approaches that
may not generalize well across different text
types. Recent advancements in NLP, includ-
ing the development of sophisticated machine
learning models and the increasing availability
of diverse text corpora, offer new opportuni-
ties for addressing the complexities of Arabic
diacritization.

This work aims to provide a comprehen-
sive assessment of current diacritization tech-
niques by leveraging various models, such as
the Viterbi N-gram model, Recurrent Neural
Networks (RNNs), and Transformer-based ar-
chitectures. Our primary goal is to evaluate
the performance of these models on primarily
the Qur’an, as it is a fully diacritized text with
widely available datasets on it that do not dis-
agree on the vowels. We also used a variety of
other Arabic media as datasets. These sources
provide a broad range of linguistic contexts,
which is crucial for developing robust diacriti-
zation systems.

1



We are particularly motivated by the need
to enhance the accessibility and readability
of Arabic text for non-native speakers. Au-
tomatic diacritization can significantly aid in
language learning and comprehension, thereby
broadening the reach of Arabic language re-
sources. Additionally, in the context of creat-
ing new annotated language resources, identi-
fying and adapting the most effective prepro-
cessing tools can minimize manual correction
efforts and improve the quality of automated
annotations.

By providing a thorough and reproducible
assessment of diacritization techniques, we
aim to contribute valuable insights to the field
and encourage further advancements in this
important area of Arabic NLP.

2 Previous Work on Arabic
Diacritization

Arabic diacritization has been approached us-
ing various techniques over the years. One
of the early significant contributions was by
Yaakov Gal (2002), who applied a Hidden
Markov Model (HMM) to the task of vowel
restoration in Arabic and Hebrew. This
method utilized statistical models to predict
the probability of diacritics based on the con-
text of surrounding letters, showing promising
results in handling the sequential nature of lan-
guage data.

Belinkov and Glass (2015) introduced the
use of Recurrent Neural Networks (RNNs) for
Arabic diacritization. They treated the prob-
lem as a sequence labeling task, where each
character in the input sequence is associated
with a diacritic label. Their approach used
Long Short-Term Memory (LSTM) units to
capture long-term dependencies in the text,
achieving high performance without relying on
external tools. They experimented with differ-
ent architectures, including unidirectional and
bidirectional LSTM layers, and showed that
deeper networks with multiple LSTM layers
significantly improved diacritization accuracy.

In 2019, Fadel et al. proposed a novel ap-
proach using neural networks for Arabic text
diacritization. They developed an end-to-end
system that leveraged both character-level and
word-level features to enhance the accuracy of
diacritic restoration. Their method demon-

strated state-of-the-art results, highlighting
the importance of combining different levels
of linguistic information.

The rise of transformer models, as discussed
by Thomas Wolf et al. (2020), brought sig-
nificant advancements in NLP, including dia-
critization tasks. Transformers, particularly
models like BERT, have shown exceptional
performance due to their ability to capture
contextual information across long text spans.
The pre-trained BERT model for Arabic, fine-
tuned for diacritization tasks, has proven to be
highly effective, as it leverages large amounts
of text data to learn rich representations of
language.

Additionally, CAMeL Tools, introduced by
Obeid et al. (2020), is an open-source Python
toolkit for Arabic NLP. It provides various
tools for tasks including diacritization, which
can be integrated into broader NLP pipelines.
The toolkit is designed to be accessible and
adaptable, supporting a wide range of applica-
tions in Arabic language processing.

Our approach seeks to compare these exist-
ing methodologies, using the Qur’an and reli-
gious texts as our corpora to offer a comprehen-
sive comparative view into existing techniques
in the field.

3 Data

We got our data from a variety of sources that
utilize diacritized texts. These were a variety
of Arabic media sources that were diacritized
such as the Quran. The data was then parsed
and split into two modes. One was the letter-
based version with a letter on the left side and
the corresponding diacritic on the right as tab-
separated values. There were a variety of sen-
tences however we believed context didn’t mat-
ter as we were mainly focused on the grammat-
ical structure of the language and how that af-
fects the corresponding words. The sentences
were then delimited with an end sentence char-
acter and the spaces were included to mark the
end of a word. An example of the data is as
follows below:

ِ م ْ س ِ ب
As is shown above the letters were separated

and their corresponding diacritic was placed
side by side in the text file, but in this example,
they are shown on top of or below the letters.

2



Aside from the letter-based version we also
created a word-based version following the
same principles as the letter-based version also
illustrated below. The diacritics were read left
to right in the file with the corresponding dia-
critic placed on the proper letter and a blank
diacritic in the sequence representing no dia-
critic

ْ َ ِ ِ اෂීۋّࡗࡲ ْ َ ْ َ ِ اᆇᅵّීෂـٰ݆ ْ َ ِ ՄّՃՂا ِ ْ ِ ྾๎ื
4 Viterbi

Initially, we began by constructing a prob-
abilistic model for predicting the diacritical
marks corresponding to the letter. We framed
the problem similar to the problem of predict-
ing the next POS tag and as such used the
Viterbi Algorithm for predicting the next se-
quence of diacritical markings given the cur-
rent word.

We first constructed a uni-gram version of
the Viterbi algorithm and tested it not on
words but rather on each letter. We split our
data into a sequence of letters for each of the
sentences and then we predicted the diacrit-
ical mark associated with each letter finally,
we recombined all the words to evaluate the
effectiveness of the model

We found by using this data the Diacritic
Error Rate of the model on a 90-5-5 split was
63.82% for the validations set and 66.16% for
the test set

As the accuracy was low doing it in the
letter fashion we assumed this was since the
letter-based Viterbi resulted in too long se-
quences unable to capture the proper prob-
abilities of the sequence. We then changed
this into a word-based model where we trained
the Viterbi algorithm on the words and the se-
quence of diacritical marks instead. This im-
proved our Diacritic Error Rate to 47.82% for
the validation set and 51.69% for the test set

We also tried an n-gram-based model using
n = 2 with the word-based data as it showed
to give better results which resulted in the fol-
lowing diacritic error rate 43.54% on the vali-
dation set and 46.32% on the test set.

We attribute this to the fact that there were
too many states for the model to evaluate. In
English the amount of POS tags for the Penn
Treebank of 36 POS tags. This is not many
and allows the Viterbi algorithm with enough

probabilistic data to get a reasonable accu-
racy on these tags. However in our case a
single word can take on possible states and as
such for 3 letters the number of possible states
would be 83 which is an exponential number of
states as such the length of the word increases,
with some words reaching 7 letters in size, the
number of possible states grows exponentially
making it difficult for the Viterbi algorithm
to accurately evaluate the proper probabilistic
path to take even with an n-gram model which
only marginally improves performance.

5 Recurrent Neural Network

Using a Recurrent Neural Network (RNN)
model, Belinkov and Glass showed experimen-
tally that the model can achieve high perfor-
mance without relying on any external tools
but solely from diacritized corpus. The prob-
lem is treated as a sequence classification task,
where each character in the input sequence is
associated with a label.

We use the following approach described in
Belinkov and Glass, 2015:

1. Let w be the letter sequence mapping to
vector sequence x. Then, map x to a hid-
den sequence h using one or more hidden
layers. In the RNN, the input layer stacks
previous and future letter vectors to make
the model learn contextual information.

2. Then, map h to output label sequence l.
The hidden layers are composed of LSTM
units that capture long-term dependen-
cies in the sequence. Belinkov and Glass
experimented with different architectures,
including unidirectional and bidirectional
LSTM (B-LSTM) layers, as well as multi-
ple layers to improve performance.

3. The output layer applies a softmax func-
tion to produce a probability distribution
over the possible diacritic labels for each
character.

The paper experimented with different
types of hidden layers and achieved different
levels of accuracy. Error rates are measured
with Diacritic Error Rates (DERs), where
it is defined as wrongly predicted diacritics
over the total number of diacritics. With
the corpus from Arabic treebank following the

3



Train/Dev/Test split, the following DERs are
achieved in the paper:

DER
Model All End # params
Feed-forward 11.76 22.90 63 K
Feed-forward (large) 11.55 23.40 908 K
LSTM 6.98 10.36 838 K
B-LSTM 6.16 9.85 518 K
2-layer B-LSTM 5.77 9.18 916 K
3-layer B-LSTM 5.08 8.14 1, 498 K

(2)
The table shows clearly that the LSTM

models can achieve much better performance
over simple feed-forward networks. Even if
we increase the number of parameters in the
feed-forward model, the LSTM is still much
better in performance, with 3-layer Bidirec-
tional LSTM having the highest performance
of 3.25% DER.

In conclusion, the model shows ability to
learn from diacritics only, without any exter-
nal resources such as the BERT pre-trained
model used in the transformer model. How-
ever, the models show slight difficulty with
proper names and rare words, which do require
external knowledge to resolve.

6 Transformer
Using a Transformer model, we explore the
application of pre-trained language models for
the task of diacritic restoration in Arabic text.
The approach leverages the Asafaya BERT ar-
chitecture and Hugging Face’s conventions for
model training and evaluation. The problem
here is treated as a sequence-to-sequence classi-
fication task, where each character in the input
sequence is associated with a label indicating
the presence and type of diacritic.

We use the following approach for our model
and data:

1. Load the data and preprocess it. The
data consists of an Arabic corpus using
words and not letters with and without
diacritics, split into input (text without
vowels) and target (text with vowels) se-
quences.

2. Split the data into training and testing
sets. Tokenize the sequences using a pre-
trained BERT tokenizer.

3. Add tokens to the BERT Model and Fine-
tune a pre-trained Model on the task of
masked language modeling to predict dia-
critics for each character in the input se-
quence.

6.1 Model and Tokenizer Initialization
We initialize the tokenizer and model using
the pre-trained BERT model from the Hug-
ging Face library:

Load pre-trained tokenizer and model
tokenizer = BertTokenizer.from_pretrained
("asafaya/bert-base-arabic")
model = BertForMaskedLM.from_pretrained
("asafaya/bert-base-arabic")

6.2 Training and Evaluation
We split our data into training and testing sets
and created a DataLoader instances using the
scikitlearn library splitting.

We modify the tokenizer to include diacrit-
ics and resize the model’s token embeddings
to accommodate the vowel prediction task at
hand that includes the vowels on alif and all
the other characters in a shorthand arabic so
we can get character recognition.

We define the training arguments and in-
stantiate the Trainer using hugging face’s
transformer trainer classes with a number of
epochs being 2 , learning rate of 2e-5 and a
batch size of 8.

6.3 Results
After training, we evaluated the model’s per-
formance and found the DER to be 7.12%:

7 Conclusions–Future Work

On the outset, we observed the highest accu-
racy from the RNN model, achieving a DER
of 3.5 % we attribute this to the use of the
B-LSTM layer and Uni-LSTM layer alongside
our architecture for the RNN. We also at-
tribute this to the method of how our data was
preprocessed and fed to the network compared
to the method used by Belinkov and Glass.

This suggests that RNNs, particularly those
leveraging Long Short-Term Memory (LSTM)
units, are highly effective for capturing the se-
quential dependencies inherent in Arabic text.
The Viterbi N-gram models, while useful, were

4



hindered by the exponential increase in state
spaces, leading to higher error rates

Although Transformer models showed
promising results, particularly with the
Asafaya BERT architecture, they still fell
short of the RNN’s performance we atrtibute
this to the limited amount of data required
to make a transformer model succesful partic-
ularly in this case. Furthermore our framing
of the problem may have contributed to the
error rate being high.

For future work, several avenues can be ex-
plored to enhance the accuracy and precision
metrics of Arabic diacritization systems. One
potential way is to integrate the approaches
into a hybrid model and introduce rule-based
methods based off of Arabic grammatical prin-
ciples. Another way is to increase the variety
of the training corpora to include more var-
ied texts, including contemporary texts from
Modern Standard Arabic in addition to Clas-
sical Arabic.

Acknowledgments

This research project was overseen by Dr.
John Ortega and Dr. Adam Meyers.

This document has been adapted by Steven
Bethard, Ryan Cotterell and Rui Yan from
the instructions for earlier ACL and NAACL
proceedings, including those for ACL 2019 by
Douwe Kiela and Ivan Vulić, NAACL 2019 by
Stephanie Lukin and Alla Roskovskaya, ACL
2018 by Shay Cohen, Kevin Gimpel, and Wei
Lu, NAACL 2018 by Margaret Mitchell and
Stephanie Lukin, ACL 2017 by Dan Gildea
and Min-Yen Kan, NAACL 2017 by Mar-
garet Mitchell, ACL 2012 by Maggie Li and
Michael White, ACL 2010 by Jing-Shin Chang
and Philipp Koehn, ACL 2008 by Johanna
D. Moore, Simone Teufel, James Allan, and
Sadaoki Furui, ACL 2005 by Hwee Tou Ng and
Kemal Oflazer, ACL 2002 by Eugene Charniak
and Dekang Lin, and earlier ACL and EACL
formats written by several people, including
John Chen, Henry S. Thompson and Don-
ald Walker. Additional elements were taken
from the formatting instructions of the Inter-
national Joint Conference on Artificial Intelli-
gence and the Conference on Computer Vision
and Pattern Recognition.

References
[1] Yonatan Belinkov and James Glass.

2015. Arabic Diacritization with Recurrent
Neural Networks

[2] Ali Fadel, Ibraheem Tuffaha, Bara Al-
Jawarneh, and Mahmoud Al-Ayyoub. 2019.
Neural Arabic Text Diacritization: State of the
Art Results and a Novel Approach for Machine
Translation

[3] Thomas Wolf et al. 2020. Transformers:
State-of-the-Art Natural Language Processing

[4] Yaakov Gal. 2002. An HMM Approach
to Vowel Restoration in Arabic and Hebrew.

[5] Ossama Obeid et al. 2020. CAMeL
Tools: An Open Source Python Toolkit for
Arabic Natural Language Processing

5


	Introduction and Motivation
	Previous Work on Arabic Diacritization
	Data
	Viterbi
	Recurrent Neural Network
	Transformer
	Model and Tokenizer Initialization
	Training and Evaluation
	Results

	Conclusions–Future Work

